3.409 \(\int \frac {\tan ^4(e+f x)}{\sqrt {a+b \sec ^2(e+f x)}} \, dx\)

Optimal. Leaf size=120 \[ -\frac {(a+3 b) \tanh ^{-1}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)+b}}\right )}{2 b^{3/2} f}+\frac {\tan (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{2 b f}+\frac {\tan ^{-1}\left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)+b}}\right )}{\sqrt {a} f} \]

[Out]

-1/2*(a+3*b)*arctanh(b^(1/2)*tan(f*x+e)/(a+b+b*tan(f*x+e)^2)^(1/2))/b^(3/2)/f+arctan(a^(1/2)*tan(f*x+e)/(a+b+b
*tan(f*x+e)^2)^(1/2))/f/a^(1/2)+1/2*(a+b+b*tan(f*x+e)^2)^(1/2)*tan(f*x+e)/b/f

________________________________________________________________________________________

Rubi [A]  time = 0.23, antiderivative size = 120, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 8, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.320, Rules used = {4141, 1975, 479, 523, 217, 206, 377, 203} \[ -\frac {(a+3 b) \tanh ^{-1}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)+b}}\right )}{2 b^{3/2} f}+\frac {\tan ^{-1}\left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)+b}}\right )}{\sqrt {a} f}+\frac {\tan (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{2 b f} \]

Antiderivative was successfully verified.

[In]

Int[Tan[e + f*x]^4/Sqrt[a + b*Sec[e + f*x]^2],x]

[Out]

ArcTan[(Sqrt[a]*Tan[e + f*x])/Sqrt[a + b + b*Tan[e + f*x]^2]]/(Sqrt[a]*f) - ((a + 3*b)*ArcTanh[(Sqrt[b]*Tan[e
+ f*x])/Sqrt[a + b + b*Tan[e + f*x]^2]])/(2*b^(3/2)*f) + (Tan[e + f*x]*Sqrt[a + b + b*Tan[e + f*x]^2])/(2*b*f)

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 377

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 479

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(e^(2*n
- 1)*(e*x)^(m - 2*n + 1)*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q + 1))/(b*d*(m + n*(p + q) + 1)), x] - Dist[e^(2*n)
/(b*d*(m + n*(p + q) + 1)), Int[(e*x)^(m - 2*n)*(a + b*x^n)^p*(c + d*x^n)^q*Simp[a*c*(m - 2*n + 1) + (a*d*(m +
 n*(q - 1) + 1) + b*c*(m + n*(p - 1) + 1))*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, p, q}, x] && NeQ[b*c - a*d
, 0] && IGtQ[n, 0] && GtQ[m - n + 1, n] && IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rule 523

Int[((e_) + (f_.)*(x_)^(n_))/(((a_) + (b_.)*(x_)^(n_))*Sqrt[(c_) + (d_.)*(x_)^(n_)]), x_Symbol] :> Dist[f/b, I
nt[1/Sqrt[c + d*x^n], x], x] + Dist[(b*e - a*f)/b, Int[1/((a + b*x^n)*Sqrt[c + d*x^n]), x], x] /; FreeQ[{a, b,
 c, d, e, f, n}, x]

Rule 1975

Int[(u_)^(p_.)*(v_)^(q_.)*((e_.)*(x_))^(m_.), x_Symbol] :> Int[(e*x)^m*ExpandToSum[u, x]^p*ExpandToSum[v, x]^q
, x] /; FreeQ[{e, m, p, q}, x] && BinomialQ[{u, v}, x] && EqQ[BinomialDegree[u, x] - BinomialDegree[v, x], 0]
&&  !BinomialMatchQ[{u, v}, x]

Rule 4141

Int[((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_.)*((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> With[
{ff = FreeFactors[Tan[e + f*x], x]}, Dist[ff/f, Subst[Int[((d*ff*x)^m*(a + b*(1 + ff^2*x^2)^(n/2))^p)/(1 + ff^
2*x^2), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, d, e, f, m, p}, x] && IntegerQ[n/2] && (IntegerQ[m/2] ||
EqQ[n, 2])

Rubi steps

\begin {align*} \int \frac {\tan ^4(e+f x)}{\sqrt {a+b \sec ^2(e+f x)}} \, dx &=\frac {\operatorname {Subst}\left (\int \frac {x^4}{\left (1+x^2\right ) \sqrt {a+b \left (1+x^2\right )}} \, dx,x,\tan (e+f x)\right )}{f}\\ &=\frac {\operatorname {Subst}\left (\int \frac {x^4}{\left (1+x^2\right ) \sqrt {a+b+b x^2}} \, dx,x,\tan (e+f x)\right )}{f}\\ &=\frac {\tan (e+f x) \sqrt {a+b+b \tan ^2(e+f x)}}{2 b f}-\frac {\operatorname {Subst}\left (\int \frac {a+b+(a+3 b) x^2}{\left (1+x^2\right ) \sqrt {a+b+b x^2}} \, dx,x,\tan (e+f x)\right )}{2 b f}\\ &=\frac {\tan (e+f x) \sqrt {a+b+b \tan ^2(e+f x)}}{2 b f}+\frac {\operatorname {Subst}\left (\int \frac {1}{\left (1+x^2\right ) \sqrt {a+b+b x^2}} \, dx,x,\tan (e+f x)\right )}{f}-\frac {(a+3 b) \operatorname {Subst}\left (\int \frac {1}{\sqrt {a+b+b x^2}} \, dx,x,\tan (e+f x)\right )}{2 b f}\\ &=\frac {\tan (e+f x) \sqrt {a+b+b \tan ^2(e+f x)}}{2 b f}+\frac {\operatorname {Subst}\left (\int \frac {1}{1+a x^2} \, dx,x,\frac {\tan (e+f x)}{\sqrt {a+b+b \tan ^2(e+f x)}}\right )}{f}-\frac {(a+3 b) \operatorname {Subst}\left (\int \frac {1}{1-b x^2} \, dx,x,\frac {\tan (e+f x)}{\sqrt {a+b+b \tan ^2(e+f x)}}\right )}{2 b f}\\ &=\frac {\tan ^{-1}\left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {a+b+b \tan ^2(e+f x)}}\right )}{\sqrt {a} f}-\frac {(a+3 b) \tanh ^{-1}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b+b \tan ^2(e+f x)}}\right )}{2 b^{3/2} f}+\frac {\tan (e+f x) \sqrt {a+b+b \tan ^2(e+f x)}}{2 b f}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 2.81, size = 196, normalized size = 1.63 \[ \frac {\tan (e+f x) \sec ^2(e+f x) (a \cos (2 (e+f x))+a+2 b)}{4 b f \sqrt {a+b \sec ^2(e+f x)}}+\frac {\sec (e+f x) \sqrt {a \cos (2 e+2 f x)+a+2 b} \left (\frac {2 b \tan ^{-1}\left (\frac {\sqrt {a} \sin (e+f x)}{\sqrt {-a \sin ^2(e+f x)+a+b}}\right )}{\sqrt {a}}-\frac {(a+3 b) \tanh ^{-1}\left (\frac {\sqrt {b} \sin (e+f x)}{\sqrt {-a \sin ^2(e+f x)+a+b}}\right )}{\sqrt {b}}\right )}{2 \sqrt {2} b f \sqrt {a+b \sec ^2(e+f x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Tan[e + f*x]^4/Sqrt[a + b*Sec[e + f*x]^2],x]

[Out]

(((2*b*ArcTan[(Sqrt[a]*Sin[e + f*x])/Sqrt[a + b - a*Sin[e + f*x]^2]])/Sqrt[a] - ((a + 3*b)*ArcTanh[(Sqrt[b]*Si
n[e + f*x])/Sqrt[a + b - a*Sin[e + f*x]^2]])/Sqrt[b])*Sqrt[a + 2*b + a*Cos[2*e + 2*f*x]]*Sec[e + f*x])/(2*Sqrt
[2]*b*f*Sqrt[a + b*Sec[e + f*x]^2]) + ((a + 2*b + a*Cos[2*(e + f*x)])*Sec[e + f*x]^2*Tan[e + f*x])/(4*b*f*Sqrt
[a + b*Sec[e + f*x]^2])

________________________________________________________________________________________

fricas [B]  time = 1.13, size = 1507, normalized size = 12.56 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(f*x+e)^4/(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="fricas")

[Out]

[-1/8*(sqrt(-a)*b^2*cos(f*x + e)*log(128*a^4*cos(f*x + e)^8 - 256*(a^4 - a^3*b)*cos(f*x + e)^6 + 32*(5*a^4 - 1
4*a^3*b + 5*a^2*b^2)*cos(f*x + e)^4 + a^4 - 28*a^3*b + 70*a^2*b^2 - 28*a*b^3 + b^4 - 32*(a^4 - 7*a^3*b + 7*a^2
*b^2 - a*b^3)*cos(f*x + e)^2 + 8*(16*a^3*cos(f*x + e)^7 - 24*(a^3 - a^2*b)*cos(f*x + e)^5 + 2*(5*a^3 - 14*a^2*
b + 5*a*b^2)*cos(f*x + e)^3 - (a^3 - 7*a^2*b + 7*a*b^2 - b^3)*cos(f*x + e))*sqrt(-a)*sqrt((a*cos(f*x + e)^2 +
b)/cos(f*x + e)^2)*sin(f*x + e)) - (a^2 + 3*a*b)*sqrt(b)*cos(f*x + e)*log(((a^2 - 6*a*b + b^2)*cos(f*x + e)^4
+ 8*(a*b - b^2)*cos(f*x + e)^2 - 4*((a - b)*cos(f*x + e)^3 + 2*b*cos(f*x + e))*sqrt(b)*sqrt((a*cos(f*x + e)^2
+ b)/cos(f*x + e)^2)*sin(f*x + e) + 8*b^2)/cos(f*x + e)^4) - 4*a*b*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)
*sin(f*x + e))/(a*b^2*f*cos(f*x + e)), -1/8*(sqrt(-a)*b^2*cos(f*x + e)*log(128*a^4*cos(f*x + e)^8 - 256*(a^4 -
 a^3*b)*cos(f*x + e)^6 + 32*(5*a^4 - 14*a^3*b + 5*a^2*b^2)*cos(f*x + e)^4 + a^4 - 28*a^3*b + 70*a^2*b^2 - 28*a
*b^3 + b^4 - 32*(a^4 - 7*a^3*b + 7*a^2*b^2 - a*b^3)*cos(f*x + e)^2 + 8*(16*a^3*cos(f*x + e)^7 - 24*(a^3 - a^2*
b)*cos(f*x + e)^5 + 2*(5*a^3 - 14*a^2*b + 5*a*b^2)*cos(f*x + e)^3 - (a^3 - 7*a^2*b + 7*a*b^2 - b^3)*cos(f*x +
e))*sqrt(-a)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e)) + 2*(a^2 + 3*a*b)*sqrt(-b)*arctan(-1/2*
((a - b)*cos(f*x + e)^3 + 2*b*cos(f*x + e))*sqrt(-b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)/((a*b*cos(f*x
 + e)^2 + b^2)*sin(f*x + e)))*cos(f*x + e) - 4*a*b*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e))/(
a*b^2*f*cos(f*x + e)), -1/8*(2*sqrt(a)*b^2*arctan(1/4*(8*a^2*cos(f*x + e)^5 - 8*(a^2 - a*b)*cos(f*x + e)^3 + (
a^2 - 6*a*b + b^2)*cos(f*x + e))*sqrt(a)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)/((2*a^3*cos(f*x + e)^4 -
a^2*b + a*b^2 - (a^3 - 3*a^2*b)*cos(f*x + e)^2)*sin(f*x + e)))*cos(f*x + e) - (a^2 + 3*a*b)*sqrt(b)*cos(f*x +
e)*log(((a^2 - 6*a*b + b^2)*cos(f*x + e)^4 + 8*(a*b - b^2)*cos(f*x + e)^2 - 4*((a - b)*cos(f*x + e)^3 + 2*b*co
s(f*x + e))*sqrt(b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e) + 8*b^2)/cos(f*x + e)^4) - 4*a*b*
sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e))/(a*b^2*f*cos(f*x + e)), -1/4*(sqrt(a)*b^2*arctan(1/4
*(8*a^2*cos(f*x + e)^5 - 8*(a^2 - a*b)*cos(f*x + e)^3 + (a^2 - 6*a*b + b^2)*cos(f*x + e))*sqrt(a)*sqrt((a*cos(
f*x + e)^2 + b)/cos(f*x + e)^2)/((2*a^3*cos(f*x + e)^4 - a^2*b + a*b^2 - (a^3 - 3*a^2*b)*cos(f*x + e)^2)*sin(f
*x + e)))*cos(f*x + e) + (a^2 + 3*a*b)*sqrt(-b)*arctan(-1/2*((a - b)*cos(f*x + e)^3 + 2*b*cos(f*x + e))*sqrt(-
b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)/((a*b*cos(f*x + e)^2 + b^2)*sin(f*x + e)))*cos(f*x + e) - 2*a*b
*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e))/(a*b^2*f*cos(f*x + e))]

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\tan \left (f x + e\right )^{4}}{\sqrt {b \sec \left (f x + e\right )^{2} + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(f*x+e)^4/(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="giac")

[Out]

integrate(tan(f*x + e)^4/sqrt(b*sec(f*x + e)^2 + a), x)

________________________________________________________________________________________

maple [C]  time = 1.73, size = 1322, normalized size = 11.02 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(f*x+e)^4/(a+b*sec(f*x+e)^2)^(1/2),x)

[Out]

-1/2/f*sin(f*x+e)*(2*2^(1/2)*((I*a^(1/2)*b^(1/2)*cos(f*x+e)-I*a^(1/2)*b^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e))/(
a+b))^(1/2)*(-2*(I*a^(1/2)*b^(1/2)*cos(f*x+e)-I*a^(1/2)*b^(1/2)-a*cos(f*x+e)-b)/(1+cos(f*x+e))/(a+b))^(1/2)*El
lipticPi((-1+cos(f*x+e))*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)/sin(f*x+e),1/(2*I*a^(1/2)*b^(1/2)+a-b)*(a+b),
(-(2*I*a^(1/2)*b^(1/2)-a+b)/(a+b))^(1/2)/((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2))*sin(f*x+e)*cos(f*x+e)^2*a+6*
2^(1/2)*((I*a^(1/2)*b^(1/2)*cos(f*x+e)-I*a^(1/2)*b^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e))/(a+b))^(1/2)*(-2*(I*a^
(1/2)*b^(1/2)*cos(f*x+e)-I*a^(1/2)*b^(1/2)-a*cos(f*x+e)-b)/(1+cos(f*x+e))/(a+b))^(1/2)*EllipticPi((-1+cos(f*x+
e))*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)/sin(f*x+e),1/(2*I*a^(1/2)*b^(1/2)+a-b)*(a+b),(-(2*I*a^(1/2)*b^(1/2
)-a+b)/(a+b))^(1/2)/((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2))*sin(f*x+e)*cos(f*x+e)^2*b-4*2^(1/2)*((I*a^(1/2)*b
^(1/2)*cos(f*x+e)-I*a^(1/2)*b^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e))/(a+b))^(1/2)*(-2*(I*a^(1/2)*b^(1/2)*cos(f*x
+e)-I*a^(1/2)*b^(1/2)-a*cos(f*x+e)-b)/(1+cos(f*x+e))/(a+b))^(1/2)*EllipticPi((-1+cos(f*x+e))*((2*I*a^(1/2)*b^(
1/2)+a-b)/(a+b))^(1/2)/sin(f*x+e),-1/(2*I*a^(1/2)*b^(1/2)+a-b)*(a+b),(-(2*I*a^(1/2)*b^(1/2)-a+b)/(a+b))^(1/2)/
((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2))*sin(f*x+e)*cos(f*x+e)^2*b-2^(1/2)*((I*a^(1/2)*b^(1/2)*cos(f*x+e)-I*a^
(1/2)*b^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e))/(a+b))^(1/2)*(-2*(I*a^(1/2)*b^(1/2)*cos(f*x+e)-I*a^(1/2)*b^(1/2)-
a*cos(f*x+e)-b)/(1+cos(f*x+e))/(a+b))^(1/2)*EllipticF((-1+cos(f*x+e))*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)/
sin(f*x+e),(-(4*I*a^(3/2)*b^(1/2)-4*I*a^(1/2)*b^(3/2)-a^2+6*a*b-b^2)/(a+b)^2)^(1/2))*sin(f*x+e)*cos(f*x+e)^2*a
-2^(1/2)*((I*a^(1/2)*b^(1/2)*cos(f*x+e)-I*a^(1/2)*b^(1/2)+a*cos(f*x+e)+b)/(1+cos(f*x+e))/(a+b))^(1/2)*(-2*(I*a
^(1/2)*b^(1/2)*cos(f*x+e)-I*a^(1/2)*b^(1/2)-a*cos(f*x+e)-b)/(1+cos(f*x+e))/(a+b))^(1/2)*EllipticF((-1+cos(f*x+
e))*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)/sin(f*x+e),(-(4*I*a^(3/2)*b^(1/2)-4*I*a^(1/2)*b^(3/2)-a^2+6*a*b-b^
2)/(a+b)^2)^(1/2))*sin(f*x+e)*cos(f*x+e)^2*b-cos(f*x+e)^3*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*a+cos(f*x+e)
^2*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*a-cos(f*x+e)*((2*I*a^(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)*b+((2*I*a^(1/2
)*b^(1/2)+a-b)/(a+b))^(1/2)*b)/(-1+cos(f*x+e))/((b+a*cos(f*x+e)^2)/cos(f*x+e)^2)^(1/2)/cos(f*x+e)^3/b/((2*I*a^
(1/2)*b^(1/2)+a-b)/(a+b))^(1/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\tan \left (f x + e\right )^{4}}{\sqrt {b \sec \left (f x + e\right )^{2} + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(f*x+e)^4/(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="maxima")

[Out]

integrate(tan(f*x + e)^4/sqrt(b*sec(f*x + e)^2 + a), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\mathrm {tan}\left (e+f\,x\right )}^4}{\sqrt {a+\frac {b}{{\cos \left (e+f\,x\right )}^2}}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(e + f*x)^4/(a + b/cos(e + f*x)^2)^(1/2),x)

[Out]

int(tan(e + f*x)^4/(a + b/cos(e + f*x)^2)^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\tan ^{4}{\left (e + f x \right )}}{\sqrt {a + b \sec ^{2}{\left (e + f x \right )}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(f*x+e)**4/(a+b*sec(f*x+e)**2)**(1/2),x)

[Out]

Integral(tan(e + f*x)**4/sqrt(a + b*sec(e + f*x)**2), x)

________________________________________________________________________________________